sábado, 30 de abril de 2011

EVOLUCIÓN DE LA ENERGIA NUCLEAR

Resumen



Gran Bretaña fue uno de los primeros países en aprovechar la energía nuclear. A mediados de la década de 1950 en el Reino Unido ya había varios reactores que generaban electricidad. El primer reactor nuclear que se conectó a una red de distribución de electricidad en Estados Unidos empezó a funcionar en 1957 en Shippingport (Pensilvania). Seis años después fue encargada la primera instalación comercial construida sin subvenciones directas del gobierno federal. Aquel encargo marcó el principio del intento de transformar los sistemas de generación eléctrica de todo el mundo para que empleasen energía nuclear en lugar de combustibles fósiles. Sin embargo, el intento fracasó debido al rápido aumento de los costes, los retrasos debidos a disposiciones locales, la reducción de la demanda de electricidad y el incremento de la preocupación por la seguridad.



Índice

1. Desarrollo de la energía nuclear.
1.2. Rayos misteriosos que conducen al radio y al núcleo.
1.3. Protón y neutrón: nuevas partículas.
1.4. Nueva alquimia en el siglo 20.
2. Reacciones nucleares.
2.1. La fisión nuclear.
2.2. La fusión nuclear.
3. Fundamentos físicos.
3.1. Núcleo.
3.2. Fisión.
3.3 Fusión.
3.4. Desintegración del alfa.
3.5. Desintegración del beta.
4. sus características.
5. riesgos de la energía nuclear.
6. la evolución del consumo de la energía nuclear a través de los tiempos.
7. tecnologías nucleares.
7.1 armas nucleares.
7.2 bomba atómica. – 7.3. Bomba de fisión.- 7.4. Bomba de fisión. –7.5. Aviones militares de propulsión nuclear. 7.6. Buques nucleares civiles.
8. Reactores nucleares.
8.1. Reactores de agua ligera y pesada. – 8.2 reactores de propulsión. 8.3eactores autor regenerativos. 8.4. Reactores de investigación.
9. ventajas. -9.1ventajas en la medicina. -9.2. Ventajas en la medicina. -9.3 ventajas en la agricultura.
10. La energía nuclear y la industria.
11. Inconvenientes.
12. Conclusiones.


Introducción

La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión Nuclear (división de núcleos atómicos pesados) o bien por Fusión Nuclear (unión de núcleos atómicos muy livianos). En las reacciones nucleares se libera una gran cantidad de energía debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía. Lo anterior se puede explicar basándose en la relación Masa-Energía producto de la genialidad del gran físico Albert Einstein.
Con relación a la liberación de energía, una reacción nuclear es un millar de veces más energética que una reacción química, por ejemplo la generada por la combustión del combustible fósil del metano.


1. Desarrollo de la energía nuclear

Conjeturas sobre la energía solar Hacia 1847 comienza a conjeturarse que siendo aceptado el principio de conservación de la energía, la edad atribuida al sol y la imposibilidad de explicar sus radiaciones a partir de una simple combustión química debería existir alguna otra fuente de energía inadvertida hasta entonces por la humanidad. En solo medio siglo desde el inesperado descubrimiento de los rayos X por parte de Wilhelm Roentgen en 1895, la ciencia siguiendo la senda de los misteriosos fenómenos radiactivos logra desvelar los secretos de la energía nuclear.   

En 1876 los experimentos de Eugene Gestean con rayos catódicos ponen en la pista a los científicos para detectar el electrón.

2. Rayos misteriosos conducen al radio y al electrón

En 1896 el físico francés Antaine Henri Becquerel comprueba que ciertas sustancias, como las sales de uranio, generan rayos penetrantes de origen misterioso.   Las investigaciones de Marie y Pierre Curie con mineral de uranio llevan al descubrimiento de otras sustancias hasta entonces desconocidas y aún más radiantes, entre ellas el radio. No pasa mucho tiempo hasta descubrir que la radioactividad implica emisión de energía. 
En 1898 Ernesto Rutherford distingue rayos que denomina alfa y beta en las radiaciones de uranio, estas últimas resultaran ser electrones. Joseph John Thompson, físico inglés, identifica y mide finalmente al electrón, la primera partícula subatómica en ser descubierta. 
En 1903 se pensaba que los únicos elementos en tener una reserva energética dentro del átomo eran los elementos radiactivos sin embargo Ernesto Rutherford sugiere que todos los átomos tienen escondida una enorme reserva de este tipo. 

Rutherford y Bohr: primeros modelos atómicos En 1911 el físico J. J. Thomson aproxima un modelo teórico del átomo en el que los electrones se repartían en el interior de una esfera de carga positiva y describían una órbita alrededor del núcleo.   Es sin embargo el neozelandés Ernesto Rutherford, quien demuestra la estructura interna del átomo, un pequeño núcleo alrededor del cual giran los electrones, al verificar experimentalmente esa hipótesis mediante bombardeo de rayos alfa descubre desvíos sorprendentes intuyendo impactos contra un núcleo mucho más masivo de lo supuesto y cuya carga era idéntica a la suma de las cargas de los electrones.

En 1913 el físico Niels Bohr desarrolla una hipótesis mejorada para explicar la estructura del átomo. Bohr postula que los electrones están dispuestos en capas definidas, o niveles cuánticos, a determinadas distancias del núcleo cumplimentando ciertas condiciones. Su formulación permite salvar inconsistencias con la física clásica del primer modelo. Comienza a intuirse progresivamente el funcionamiento de complejas fuerzas dentro del átomo cuya comprensión posibilita dos décadas más tarde modificar con éxito la estructura de sus propios núcleos. 

Antes de 1914 se había detectado en los experimentos de rayos catódicos una partícula con carga positiva cuya masa es igual a la masa del hidrogeno. Rutherford sugiere ahora que pese a su desproporcionada masa es equivalente aunque con carga positiva a la del electrón. La nueva partícula será denominada protón. 

3. Protón y neutrón: nuevas partículas  

En 1919 Ernesto Rutherford encuentra la primera evidencia experimental de un protón. Rutherford expone gas nitrógeno a una fuente radiactiva de partículas alfa. Al colisionar algunas de estas partículas con los núcleos de los átomos de nitrógeno se transforman en átomos de oxígeno-17. Imprevistamente ha logrado llevar a cabo la primera reacción nuclear hecha por el hombre.
En 1932 Chadwick realiza un descubrimiento crucial: el neutrón, partícula de masa equivalente a la del protón, pero carente de carga, lo que le convierte en un proyectil atómico ideal, pues es capaz de penetrar en el átomo sin ser afectado. Los bombardeos cada vez más efectivos, sobre los núcleos atómicos provocan alteraciones en el equilibrio energético de los átomos y abren así el camino a la transmutación de elementos, algo por entonces impensable.

4. Nueva alquimia en el siglo XX

En 1934 Frederick Joliot-Curie logra fosforo-30, el primer núcleo obtenido mediante reacciones nucleares provocadas por bombardeo de partículas. Entre tanto Fermi ensaya el bombardeo de uranio con neutrones, las extrañas radiaciones beta resultantes confirman 5 años más tarde la obtención de un elemento desconocido, el primero transuránico, que es denominado neptunio y más tarde otro denominado plutonio. Las experiencias de Fermi logran además variantes de átomos de elementos radiactivos ya conocidos con diferente valor másico que comienzan a ser conocidas como radioisótopos. Sus aplicaciones para la medicina en exploración y diagnostico serán revolucionarias.
Dibujo




5.1 La fisión nuclear

Durante la Segunda Guerra Mundial, el Departamento de Desarrollo de Armamento de la Alemania Nazi desarrolló un proyecto de energía nuclear (Proyecto Uranio) con vistas a la producción de un artefacto explosivo nuclear. Albert Einstein, en 1939, firmó una carta al presidente Franklin Deslano Roosevelt de los Estados Unidos, escrita por Leo Szilárd, en la que se prevenía sobre este hecho.

El 2 de diciembre de 1942, como parte del proyecto Manhattan dirigido por J. Robert Oppenheimer, se construyó el primer reactor del mundo hecho por el ser humano (existió un reactor natural en Oslo, el Chicago Pile-1 (CP-1).
Como parte del mismo programa militar, se construyó un reactor mucho mayor en Han Ford, destinado a la producción de plutonio, y al mismo tiempo, un proyecto de enriquecimiento de uranio en cascada. El 16 de julio de 1945 fue probada la primera bomba nuclear (nombre en clave Trinity) en el desierto de Alamogordo. En esta prueba se llevó a cabo una explosión equivalente a 19.000.000 de kg de TNT (19 kilotones), una potencia jamás observada anteriormente en ningún otro explosivo. Ambos proyectos desarrollados finalizaron con la construcción de dos bombas, una de uranio enriquecido y una de plutonio (Little Voy y Flat Mano) que fueron lanzadas sobre las ciudades japonesas de Hiroshima (6 de agosto de 1945) y Nagasaki (9 de agosto de 1945) respectivamente. El 15 de agosto de 1945 acabó la segunda guerra mundial en el Pacífico con la rendición de Japón. Por su parte el programa de armamento nuclear alemán (liderado este por Werner Heidelberg), no alcanzó su meta antes de la rendición de Alemania el 8 de mayo de 1945.

Posteriormente se llevaron a cabo programas nucleares en la Unión Soviética (primera prueba de una bomba de fisión el 29 de agosto de 1949), Francia y Gran Bretaña, comenzando la carrera armamentística en ambos bloques creados tras la guerra, alcanzando límites de potencia destructiva nunca antes sospechada por el ser humano (cada bando podía derrotar y destruir varias veces a todos sus enemigos).

Ya en la década de 1940, el almirante Hiñan Rick ver propuso la construcción de reactores de fisión no encaminados esta vez a la fabricación de material para bombas, sino a la generación de electricidad. Se pensó, acertadamente, que estos reactores podrían constituir un gran sustituto del diésel en los submarinos. Se construyó el primer reactor de prueba en 1953, botando el primer submarino nuclear (el USS Nautilos (SSN-571)) el 17 de enero de 1955 a las 11:00. El Departamento de Defensa estadounidense propuso el diseño y construcción de un reactor nuclear utilizable para la generación eléctrica y propulsión en los submarinos a dos empresas distintas norteamericanas: General Electric y Westinghouse. Estas empresas desarrollaron los reactores de agua ligera tipo BWR y PWR respectivamente.

Estos reactores se han utilizado para la propulsión de buques, tanto de uso militar (submarinos, cruceros, portaaviones,...) como civil (rompehielos y cargueros), donde presentan potencia, reducción del tamaño de los motores, reducción en el almacenamiento de combustible y autonomía no mejorados por ninguna otra técnica existente.

Los mismos diseños de reactores de fisión se trasladaron a diseños comerciales para la generación de electricidad. Los únicos cambios producidos en el diseño con el transcurso del tiempo fueron un aumento de las medidas de seguridad, una mayor eficiencia termodinámica, un aumento de potencia y el uso de las nuevas tecnologías que fueron apareciendo.

Entre 1950 y 1960 Canadá desarrolló un nuevo tipo, basado en el PWR, que utilizaba agua pesada como moderador y uranio natural como combustible, en lugar del uranio enriquecido utilizado por los diseños de agua ligera. Otros diseños de reactores para su uso comercial utilizaron carbono (Magnos, AGR, RBMK o PBR entre otros) o sales fundidas (litio o berilio entre otros) como moderador. Este último tipo de reactor fue parte del diseño del primer avión bombardero (1954) con propulsión nuclear (el US Aircraft Reactor Experimenta o ARE). Este diseño se abandonó tras el desarrollo de los misiles balísticos intercontinentales (ICBM).

Otros países (Francia, Italia, entre otros) desarrollaron sus propios diseños de reactores nucleares para la generación eléctrica comercial.

En 1946 se construyó el primer reactor de neutrones rápidos (Clementina) en Los Álamos, con plutonio como combustible y mercurio como refrigerante. En 1951 se construyó el EBR-I, el primer reactor rápido con el que se consiguió generar electricidad. En 1996, el Superfinas o SPX, fue el reactor rápido de mayor potencia construido hasta el momento (1200 Me). En este tipo de reactores se pueden utilizar como combustible los radioisótopos del plutonio, el torio y el uranio que no son fisibles con neutrones térmicos (lentos).

En la década de los 50 Ernesto Lawrence propuso la posibilidad de utilizar reactores nucleares con geometrías inferiores a la criticidad (reactores suscriticos cuyo combustible podría ser el torio), en los que la reacción sería soportada por un aporte externo de neutrones. En 1993 Carlo Rubia propone utilizar una instalación de separación en la que un acelerador de protones produjera los neutrones necesarios para mantener la instalación. A este tipo de sistemas se les conoce como Sistemas asistidos por aceleradores (en inglés Acelerador deriven sistemas, ADS sus siglas en inglés), y se prevé que la primera planta de este tipo (MYRRHA) comience su funcionamiento entre el 2016 y el 2018 en el centro de Mol (Bélgica).


de izquierda a derecha: T. ROBERT OPPENHEIMER Y ERNEST LAWRENCE.



5.2. La fusión nuclear
Hasta el principio del s. no se entendió la forma en que se generaba energía en el interior de las estrellas para contrarrestar el colapso gravitatorio de estas. No existía reacción química con la potencia suficiente y la fisión tampoco era capaz. En 1938 Hans Vete logró explicarlo mediante reacciones de fusión, con el ciclo CNO, para estrellas muy pesadas. Posteriormente se descubrió el ciclo protón-protón para estrellas de menor masa, como el Sol.

En los años 1940, como parte del proyecto Manhattan, se estudió la posibilidad del uso de la fusión en la bomba nuclear. En 1942 se investigó la posibilidad del uso de una reacción de fisión como método de ignición para la principal reacción de fusión, sabiendo que podría resultar en una potencia miles de veces superior. Sin embargo, tras finalizar la Segunda Guerra Mundial, el desarrollo de una bomba de estas características no fue considerado primordial hasta la explosión de la primera bomba atómica rusa en 1949, RDS-1 o Joe-1. Este evento provocó que en 1950 el presidente estadounidense Harry S. Truman anunciara el comienzo de un proyecto que desarrollara la bomba de hidrógeno. El 1 de noviembre de 1952 se probó la primera bomba nuclear (nombre en clave Mike, parte de la Operación Ivo o Hiedra), con una potencia equivalente a 10.400.000.000 de kg de TNT (10,4 megatones). El 12 de agosto de 1953 la Unión Soviética realiza su primera prueba con un artefacto termonuclear (su potencia alcanzó algunos centenares de kilotones).

Las condiciones que eran necesarias para alcanzar la ignición de un reactor de fusión controlado, sin embargo, no fueron derivadas hasta 1955 por John D. Rawson. [6] Los criterios de Rawson definieron las condiciones mínimas necesarias de tiempo, densidad y temperatura que debía alcanzar el combustible nuclear (núcleos de hidrógeno) para que la reacción de fusión se mantuviera. Sin embargo, ya en 1946 se patentó el primer diseño de reactor termonuclear. [7] En 1951 comenzó el programa de fusión de Estados Unidos, sobre la base del stellarator. En el mismo año comenzó en la Unión Soviética el desarrollo del primer Toyama, dando lugar a sus primeros experimentos en 1956. Este último diseño logró en 1968 la primera reacción termonuclear cuasi-estacionaria jamás conseguida, demostrándose que era el diseño más eficiente conseguido hasta la época. ITER, el diseño internacional que tiene fecha de comienzo de sus operaciones en el año 2016 y que intentará resolver los problemas existentes para conseguir un reactor de fusión de confinamiento magnético, utiliza este diseño.
Cápsula de combustible preparada para el reactor de fusión de confinamiento inercial NIF, rellena de deuterio y tritio. En 1962 se propuso otra técnica para alcanzar la fusión basada en el uso de láseres para conseguir una implosión en pequeñas cápsulas llenas de combustible nuclear (de nuevo núcleos de hidrógeno). Sin embargo hasta la década de los 70 no se desarrollaron láseres suficientemente potentes. Sus inconvenientes prácticos hicieron de esta una opción secundaria para alcanzar el objetivo de un reactor de fusión. Sin embargo, debido a los tratados internacionales que prohibían la realización de ensayos nucleares en la atmósfera, esta opción (básicamente micro explosiones termonucleares) se convirtió en un excelente laboratorio de ensayos para los militares, con lo que consiguió financiación para su continuación. Así se han construido el Nacional Ignición Facility (NIF, con inicio de sus pruebas programadas para 2010) estadounidense y el Láser Mega joule (LMJ, que será completado en el 2010) francés, que persiguen el mismo objetivo de conseguir un dispositivo que consiga mantener la reacción de fusión a partir de este diseño. Ninguno de los proyectos de investigación actualmente en marcha predice una ganancia de energía significativa, por lo que está previsto un proyecto posterior que pudiera dar lugar a los primeros reactores de fusión comerciales (DEMO para el confinamiento magnético e Híper para el confinamiento inercial).




6.Fundamentos físicos

Sir James Chadwick descubrió el neutrón en 1932, año que puede considerarse como el inicio de la física nuclear moderna.
El modelo de átomo propuesto por Niels Bohr consiste en un núcleo central compuesto por partículas que concentran la práctica mayoría de la masa del átomo (neutrones y protones), rodeado por varias capas de partículas cargadas casi sin masa (electrones). Mientras que el tamaño del átomo resulta ser del orden del angstrom (10-10 m), el núcleo puede medirse en fermis (10-15 m), o sea, el núcleo es 100.000 veces menor que el átomo.

Todos los átomos neutros (sin carga eléctrica) poseen el mismo número de electrones que de protones. Un elemento químico se puede identificar de forma inequívoca por el número de protones que posee su núcleo; este número se llama número atómico (Z). El número de neutrones (N) sin embargo puede variar para un mismo elemento. Para valores bajos de Z ese número tiende a ser muy parecido al de protones, pero al aumentar Z se necesitan más neutrones para mantener la estabilidad del núcleo. A los átomos a los que solo les distingue el número de neutrones en su núcleo (en definitiva, su masa), se les llama isótopos de un mismo elemento. La masa atómica de un isótopo viene dada por A = Z + N u, el número de protones más el de neutrones (nucleones) que posee en su núcleo.

Para denominar un isótopo suele utilizarse la letra que indica el elemento químico, con un superíndice que es la masa atómica y un subíndice que es el número atómico (p. ej. el isótopo 238 del uranio se escribiría como  

6.1 Núcleo:
Los neutrones y protones que forman los núcleos tienen una masa aproximada de 1 u, estando el protón cargado eléctricamente con carga positiva +1, mientras que el neutrón no posee carga eléctrica. Teniendo en cuenta únicamente la existencia de las fuerzas electromagnética y gravitatoria, el núcleo sería inestable (ya que las partículas de igual carga se repelerían deshaciendo el núcleo), haciendo imposible la existencia de la materia. Por este motivo (ya que es obvio que la materia existe) fue necesario añadir a los modelos una tercera fuerza: la fuerza fuerte (hoy en día fuerza nuclear fuerte residual). Esta fuerza debía tener como características, entre otras, que era muy intensa, atractiva a distancias muy cortas (solo en el interior de los núcleos), siendo repulsiva a distancias más cortas (del tamaño de un nucleón), que era central en cierto rango de distancias, que dependía del espín y que no dependía del tipo de nucleón (neutrones o protones) sobre el que actuaba. En 1935, Hideki Yukawa dio una primera solución a esta nueva fuerza estableciendo la hipótesis de la existencia de una nueva partícula: el mesón. El más ligero de los mesones, el pion, es el responsable de la mayor parte del potencial entre nucleones de largo alcance (1 fm). El potencial de Yukawa (potencial OPEP) que describe adecuadamente la interacción para dos partículas de espines s1 y s2 respectivamente, se puede escribir como.
Otros experimentos que se realizaron sobre los núcleos indicaron que su forma debía de ser aproximadamente esférica de radio  FM, siendo A la masa atómica, es decir, la suma de neutrones y protones. Esto exige además que la densidad de los núcleos sea la misma (VαR3αA, es decir el volumen es proporcional a. Como la densidad se halla dividiendo la masa por el volumen
 Esta característica llevó a la equiparación de los núcleos con un líquido, y por tanto al modelo de la gota líquida, fundamental en la comprensión de la fisión de los núcleos.
Energía de ligadura media por nucleón de los distintos elementos atómicos en función de su masa atómica. La masa de un núcleo, sin embargo, no resulta exactamente de la suma de sus nucleones. Tal y como demostró Albert Einstein, la energía que mantiene unidos a esos nucleones se observa como una diferencia en la masa del núcleo, de forma que esa diferencia viene dada por la ecuación  .Así, pesando los distintos átomos por una parte, y sus componentes por otra, puede determinarse la energía media por nucleón que mantiene unidos a los diferentes núcleos.
Los núcleos muy ligeros poseen menos energía de ligadura que los que son un poquito más pesados (la parte izquierda de la gráfica). Esta característica es la base de la liberación de la energía en la fusión. Y al contrario, en la parte de la derecha se ve que los muy pesados tienen menor energía de ligadura que los que son algo más ligeros.



6.2. Fisión

 Fermi, tras el descubrimiento del neutrón, realizó una serie de experimentos en los que bombardeaba distintos núcleos con estas nuevas partículas. En estos experimentos observó que cuando utilizaba neutrones de energías bajas, en ocasiones el neutrón era absorbido emitiéndose fotones.
Para averiguar el comportamiento de esta reacción repitió el experimento sistemáticamente en todos los elementos de la tabla periódica. Así descubrió nuevos elementos radiactivos, pero al llegar al uranio obtuvo resultados distintos. Lise Meitnerio, Otto Hahn y Fritz Strassmann consiguieron explicar el nuevo fenómeno al suponer que el núcleo de uranio al capturar el neutrón se escindía en dos partes de masas aproximadamente iguales. De hecho detectaron bario, de masa aproximadamente la mitad que la del uranio. Posteriormente se averiguo que esa escisión (o fisión) no se daba en todos los isótopos del uranio, sino solo en el 235U. Y más tarde aún se supo que esa escisión podía dar lugar a muchísimos elementos distintos, cuya distribución de aparición es muy típica (similar a la doble joroba de un camello.
Dibujo de la fisión



Esquema del fenómeno de la fisión del 235U. Un neutrón de baja velocidad (térmico) impacta en un núcleo de uranio desestabilizándolo. Este se divide en dos partes y además emite una media de 2.5 neutrones por fisión. En la fisión de un núcleo de uranio, no solo aparecen dos núcleos más ligeros resultado de la división del de uranio, sino que además se emiten 2 o 3 (en promedio 2,5 en el caso del 235U) neutrones a una alta velocidad (energía). Como el uranio es un núcleo pesado no se cumple la relación N=Z (igual número de protones que de neutrones) que sí se cumple para los elementos más ligeros, por lo que los productos de la fisión poseen un exceso de neutrones. Este exceso de neutrones hace inestables (radiactivos) a esos productos de fisión, que alcanzan la estabilidad al desintegrarse los neutrones excedentes por desintegración beta generalmente. La fisión del 235U puede producirse en más de 40 formas diferentes, originándose por tanto más de 80 productos de fisión distintos, que a su vez se desintegran formando cadenas de desintegración, por lo que finalmente aparecen cerca de 200 elementos a partir de la fisión del uranio.

La energía desprendida en la fisión de cada núcleo de 235U es en promedio de 200 MeV. Los minerales explotados para la extracción del uranio suelen poseer contenidos de alrededor de 1 gramo de uranio por kg de mineral (la pechblenda por ejemplo). Como el contenido de 235U en el uranio natural es de un 0,7%, se obtiene que por cada kg de mineral extraído tuviéramos  átomos de 235U. Si fisionamos todos esos átomos (1 gramo de uranio) obtendríamos una energía liberada de  por gramo. En comparación, por la combustión de 1 kg de carbón de la mejor calidad (antracita) se obtiene una energía de unos  es decir, se necesitan más de 10 toneladas de antracita (el tipo de carbón con mayor poder calorífico) para obtener la misma energía contenida en 1 kg de uranio natural.

La aparición de los 2,5 neutrones por cada fisión posibilita la idea de llevar a cabo una reacción en cadena, si se logra hacer que de esos 2,5 al menos un neutrón consiga fisionar un nuevo núcleo de uranio. La idea de la reacción en cadena es habitual en otros procesos químicos. Los neutrones emitidos por la fisión no son útiles inmediatamente, sino que hay que frenarlos (moderarlos) hasta una velocidad adecuada. Esto se consigue rodeando los átomos por otro elemento con un Z pequeño, como por ejemplo hidrógeno, carbono o litio, material denominado moderador.

Otros átomos que pueden fisionar con neutrones lentos son el 233U o el 239Pu. Sin embargo también es posible la fisión con neutrones rápidos (de energías altas), como por ejemplo el 238U (140 veces más abundante que el 235U) o el 232Th (400 veces más abundante que el 235U).

La teoría elemental de la fisión la proporcionaron Bohr y Wheeler, utilizando un modelo según el cual los núcleos de los átomos se comportan como gotas líquidas.

La fisión se puede conseguir también mediante partículas alfa, protones o deuterones.


6.3.  Fusión
Así como la fisión es un fenómeno que aparece en la corteza terrestre de forma natural (si bien con una frecuencia pequeña), la fusión es absolutamente artificial en nuestro entorno. Sin embargo, esta energía posee ventajas con respecto a la fisión. Por un lado el combustible es abundante y fácil de conseguir, y por otro, sus productos son elementos estables y ligeros.

En la fusión, al contrario que en la fisión donde se dividen los núcleos, la reacción consiste en la unión de dos o más núcleos ligeros. Esta unión da lugar a un núcleo más pesado que los usados inicialmente y a neutrones. La fusión se consiguió antes incluso de comprender completamente las condiciones que se necesitaban, limitándose a conseguir condiciones extremas de presión y temperatura usando una bomba de fisión. Pero no es hasta que Lawson define unos criterios de tiempo, densidad y temperatura mínimos cuando se comienza a comprender el funcionamiento de la fusión.

Aunque en las estrellas la fusión se da entre una variedad de elementos químicos, el elemento con el que es más sencillo alcanzarla es el hidrógeno. El hidrógeno posee tres isótopos: el hidrógeno común  , el deuterio y el tritio . Esto es así porque la fusión requiere que se venza la repulsión electrostática que experimentan los núcleos al unirse, por lo que a menor carga eléctrica, menor será esta. Además, a mayor cantidad de neutrones, más pesado será el núcleo resultante (más arriba estaremos en la gráfica de las energías de ligadura), con lo que mayor será la energía liberada en la reacción.
Una reacción particularmente interesante es la fusión de deuterio y tritio:

En esta reacción se liberan 17,6 MeV por fusión, más que en el resto de combinaciones con isótopos de hidrógeno. Además esta reacción proporciona un neutrón muy energético que puede aprovecharse para generar combustible adicional para reacciones posteriores de fusión, utilizando litio, por ejemplo. La energía liberada por gramo con esta reacción es casi 1.000 veces mayor que la lograda en la fisión de 1 gramo de uranio natural (unas 7 veces superior si fuera un gramo de 235U puro).

Para vencer la repulsión electrostática, es necesario que los núcleos a fusionar alcancen una energía cinética de aproximadamente 10 keV. Esta energía se obtiene mediante un intenso calentamiento (igual que en las estrellas, donde se alcanzan temperaturas de 108 K), que implica un movimiento de los átomos igual de intenso. Además de esa velocidad para vencer la repulsión electrostática, la probabilidad de que se produzca la fusión debe ser elevada para que la reacción suceda. Esto implica que se deben poseer suficientes átomos con energía suficiente durante un tiempo mínimo. El criterio de Lawson define que el producto entre la densidad de núcleos con esa energía por el tiempo durante el que deben permanecer en ese estado debe ser:
Los dos métodos en desarrollo para aprovechar de forma útil la energía desprendida en esta reacción son el confinamiento magnético y el confinamiento inercial (con fotones que provienen de láser o partículas que provienen de aceleradores).



6.5.  Desintegración beta
Existen dos modos de desintegración beta. En el tipo β− la fuerza débil convierte un neutrón (n0) en un protón (p+) y al mismo tiempo emite un electrón (e−) y un antineutrino ( ):
.
En el tipo β+ un protón se transforma en un neutrón emitiendo un positrón (e+) y un neutrino (νe):
.
Sin embargo, este último modo no se presenta de forma aislada, sino que necesita un aporte de energía.
La desintegración beta hace cambiar al elemento químico que la sufre. Por ejemplo, en la desintegración β− el elemento se transforma en otro con un protón (y un electrón) más. Así en la desintegración del 137Cs  por β;
En 1934, Enrico Fermi consiguió crear un modelo de esta desintegración que respondía correctamente a su fenomenología.


7. Sus características
Este tipo de energía es generada a través de las reacciones nucleares o de la desintegración de los núcleos de determinados átomos. Una reacción nuclear consiste en la modificación de la composición del núcleo atómico de un elemento, que muta y pasa a ser otro como consecuencia del proceso. Existen dos tipos de reacciones nucleares que liberan energía: la fisión (división de núcleos atómicos pesados) y la fusión (unión de núcleos atómicos muy livianos).
El hombre comenzó a obtener y transformar este tipo de energía entre los años ´30 y ´40, para la construcción de la primera bomba atómica. Desde entonces se han realizado adelantos e investigaciones en este campo para que su aplicación sea beneficiosa para la humanidad.
Entre las décadas del cincuenta y del sesenta se aceptó esta forma de generar energía debido al poco combustible que consumía. Pero a mediados de los ´80 hubo quienes, entre ellos ecologistas, alertaron sobre los peligros de la radiación, sobre todo en caso de accidentes.
Quienes saben aseguran que el riesgo de accidente grave en una central nuclear, bien construida y manejada, es mínimo. Pero el accidente de Chernobyl (1986), sucedido en una central de la URSS construida con deficientes medidas de seguridad, provocó que muchos países se hayan opuesto a la energía nuclear. Además se presentó otro problema de difícil solución, como el del almacenamiento de los residuos nucleares de alta


8. Riesgos de la energía nuclear

Si bien la energía nuclear tiene una serie de beneficios para multitud de campos, su generación también entraña una serie de riesgos que es interesante conocer a la de hora de posicionarse a favor o en contra.
Por un lado, un riesgo sin duda evitable es el desarrollo de armas nucleares como ya sucediera en un pasado y como algunos países están en la actualidad pretendiendo. Es cierto que este riesgo es únicamente debido a la mano del hombre, pero la existencia de la energía nuclear hace posible la fabricación de este tipo de armas.
Otro riesgo a tener en cuenta es a la hora de transportar y almacenar material radioactivo. Y es que este tipo de residuos son altamente contaminantes, tanto para el medioambiente como para el ser humano, por lo que un descuido en su almacenamiento o transporte provoca daños muy severos.


9. La evolución del consumo de energía nuclear a través de los años

 En la década del ’80, sin embargo, el consumo de energía nuclear volvió a decaer, por los elevados costos ecológicos que significaba, dados los residuos radiactivos que se producen en la fisión, que deben ser manejados cuidadosamente y además son complicados para almacenar, por el tiempo que precisan para degradarse. La energía de fusión podría haber sido algo así como una solución a los inconvenientes de la energía de fisión, ya que representaba una energía ecológica, económica y muy potente, Sin embargo, en todos los experimentos que se realizaron, consumió más energía de la que produjo, y resultó inviable nuevamente. Con los accidentes de la central de Chernóbil y la Three Mile Island, los cuales significaron una gran pérdida de material y un importante aumento a la contaminación, debido a la liberación no intencional de desechos tóxicos, la energía nuclear nuevamente sufrió una caída en cuanto a su utilización.

Desde ese momento, existen múltiples normas y regulaciones para el uso de la energía nuclear, las cuales se basan en evitar que vuelvan a repetirse situaciones fatales como la de Hiroshima, así como nuevos accidentes en las centrales nucleares. En la actualidad, el consumo de energia nuclear se encuentra en un auge. A pesar de que está prohibida la experimentación con energía nuclear para la elaboración de armas nucleares, sí está permitida para uso civil y para su aprovechamiento energético.
Según el Gobierno de Estados Unidos, el consumo de energía aumentará más de un 50% entre el 2004 y el 2030. Aunque se cree que éste aumento se será principalmente en los países con economías emergentes, se estima que esto significará también el aumento de los precios del petróleo, así como también del gas natural. Dado que resulta económicamente beneficioso, es probable que con estos también se incremente el consumo de energía nuclear en el mundo. A pesar de que esto significa una mejora para la economía mundial, actualmente en crisis, se estima que también significará un gran golpe ecológico, dado que en la actualidad todavía no se ha logrado encontrar una forma de degradar los desechos radiactivos de la fisión en menos tiempo.


10. Tecnologías  nucleares
10.1. Armas nucleares
Un arma es todo instrumento, medio o máquina que se destina a atacar o a defenderse.11 Según tal definición, existen dos categorías de armas nucleares:
1.         Aquellas que utilizan la energía nuclear de forma directa para el ataque o la defensa, es decir, los explosivos que usan la fisión o la fusión.
2.         Aquellas que utilizan la energía nuclear para su propulsión, pudiendo a su vez utilizar o no munición que utilice la energía nuclear para su detonación. En esta categoría se pueden citar los buques de guerra de propulsión nuclear (cruceros, portaaviones, submarinos, bombarderos etc.).


10.2.  Bomba atómica
Existen dos formas básicas de utilizar la energía nuclear desprendida por reacciones en cadena descontroladas de forma explosiva: la fisión y la fusión.


10.3. Bomba de fisión
 Métodos utilizados para crear una masa crítica del elemento físil empleado en la bomba de fisión.
El 16 de julio de 1945 se produjo la primera explosión de una bomba de fisión creada por el ser humano: La Prueba Trinity.
Existen dos tipos básicos de bombas de fisión: utilizando uranio altamente enriquecido (enriquecimiento superior al 90% en 235U) o utilizando plutonio. Ambos tipos se fundamentan en una reacción de fisión en cadena descontrolada y solo se han empleado en un ataque real en Hiroshima y Nagasaki, al final de la Segunda Guerra Mundial.
Para que este tipo de bombas funcionen es necesario utilizar una cantidad del elemento utilizado superior a la Masa crítica. Suponiendo una riqueza en el elemento del 100%, eso supone 52 kg de 235U o 10 kg de 239Pu. Para su funcionamiento se crean 2 o más partes suscriticas que se unen mediante un explosivo químico convencional de forma que se supere la masa crítica.
Los dos problemas básicos que se debieron resolver para crear este tipo de bombas fueron:
          Generar suficiente cantidad del elemento físil a utilizar, ya sea uranio enriquecido o plutonio puro.
          Alcanzar un diseño en el que el material utilizado en la bomba no sea destruido por la primera explosión antes de alcanzar la criticidad.
El rango de potencia de estas bombas se sitúa entre aproximadamente el equivalente a una tonelada de TNT hasta los 500.000 kilotones.

10.4. Bomba de fusión

Diseño básico Teller-Ullam
Tras el primer ensayo exitoso de una bomba de fisión por la Unión Soviética en 1949 se desarrolló una segunda generación de bombas nucleares que utilizaban la fusión. Se la llamó bomba termonuclear, bomba H o bomba de hidrógeno. Este tipo de bomba no se ha utilizado nunca contra ningún objetivo real. El llamado diseño Teller-Ullam (o secreto de la bomba H) separa ambas explosiones en dos fases.
Este tipo de bombas pueden ser miles de veces más potentes que las de fisión. En teoría no existe un límite a la potencia de estas bombas, siendo la de mayor potencia explotada la bomba del Zar, de una potencia superior a los 50 megatones.
Las bombas de hidrógeno utilizan una bomba primaria de fisión que genera las condiciones de presión y temperatura necesarias para comenzar la reacción de fusión de núcleos de hidrógeno. Los únicos productos radiactivos que generan estas bombas son los producidos en la explosión primaria de fisión, por lo que a veces se le ha llamado bomba nuclear limpia. El extremo de esta característica son las llamadas bombas de neutrones o bomba N, que minimizan la bomba de fisión primaria, logrando un mínimo de productos de fisión. Estas bombas además se diseñaron de tal modo que la mayor cantidad de energía liberada sea en forma de neutrones, con lo que su potencia explosiva es la décima parte que una bomba de fisión. Fueron concebidas como armas anti-tanque, ya que al penetrar los neutrones en el interior de los mismos, matan a sus ocupantes por las radiaciones.
Buques militares de propulsión nuclear
Durante la segunda guerra mundial se comprobó que el submarino podía ser un arma decisiva, pero poseía un grave problema: su necesidad de emerger tras cortos períodos para obtener aire para la combustión del diésel en que se basaban sus motores (la invención del sorel mejoró algo el problema, pero no lo solucionó). El Almirante Hyman G. Rickover fue el primero que pensó que la energía nuclear podría ayudar con este problema.
 USS Enterprise (CVN-65) junto con otros buques de apoyo de propulsión nuclear (un crucero y un destructor) en el Mediterráneo. La tripulación forma en su cubierta la famosa fórmula de Einstein E=mc² sobre la equivalencia masa-energía.
Los desarrollos de los reactores nucleares permitieron un nuevo tipo de motor con ventajas fundamentales:
1.         No precisa aire para el funcionamiento del motor, ya que no se basa en la combustión.
2.         Una pequeña masa de combustible nuclear permite una autonomía de varios meses (años incluso) sin repostar. Por ejemplo, los submarinos de Estados Unidos no necesitan repostar durante toda su vida útil.
3.         Un empuje que ningún otro motor puede equiparar, con lo que pudieron construirse submarinos mucho más grandes que los existentes hasta el momento. El mayor submarino construido hasta la fecha son los de la clase Akula rusos (desplazamiento de 48 mil toneladas, 175 m de longitud).
Estas ventajas condujeron a buques que alcanzan velocidades de más de 25 nudos, que pueden permanecer semanas en inmersión profunda y que además pueden almacenar enormes cantidades de munición (nuclear o convencional) en sus bodegas. De hecho las armadas de Estados Unidos, Francia y el Reino Unido sólo poseen submarinos que utilizan este sistema de propulsión.
En los submarinos se han utilizado reactores de agua a presión, de agua en ebullición o de sales fundidas. Para conseguir reducir el peso del combustible en estos reactores se usa uranio con altos grados de enriquecimiento (del 30 al 40% en los rusos o del 96% en los estadounidenses). Estos reactores presentan la ventaja de que no es necesario (aunque sí es posible) convertir el vapor generado por el calor en electricidad, sino que puede utilizarse de forma directa sobre una turbina que proporciona el movimiento a las hélices que impulsan el buque, mejorando notablemente el rendimiento.
Se han construido una gran variedad de buques militares que usan motores nucleares y que, en algunos casos, portan a su vez misiles de medio o largo alcance con cabezas nucleares:
          Cruceros. Como el USS Long Beach (CGN-9), 2 reactores nucleares integrados tipo C1W.
          Destructores. Como el USS Bainbridge (CGN-25) fue el buque de propulsión nuclear más pequeño jamás construido, usa 2 reactores nucleares integrados tipo D2G.
          Portaaviones. El más representativo es el USS Enterprise (CVN-65), construido en 1961 y aún operativo, que utiliza para su propulsión 8 reactores nucleares tipo A2W.
          Submarinos balísticos. Utilizan la energía nuclear como propulsión y misiles de medio o largo alcance como armamento. La clase Akula son de este tipo, utilizando 2 reactores nucleares tipo OK-650 y portando además de otro armamento convencional 20 misiles nucleares RSM-52, cada uno con 10 cabezas nucleares de 200 kilotones cada una.
          Submarinos de ataque. Como el USS Seawolf (SSN-21) de la clase Seawolf que usa un reactor nuclear integrado PWR tipo S6W. Alcanza una velocidad de 30 nudos.
Estados Unidos, Gran Bretaña, Rusia, China y Francia poseen buques de propulsión nuclear.

10.5.  Aviones militares de propulsión nuclear
Tanto Estados Unidos como la Unión Soviética se plantearon la creación de una flota de bombarderos de propulsión nuclear. De este modo se pretendía mantenerlos cargados con cabezas nucleares y volando de forma permanente cerca de los objetivos prefijados. Con el desarrollo del Misil balístico intercontinental (ICBM) a finales de los 50, más rápidos y baratos, sin necesidad de pilotos y prácticamente invulnerables, se abandonaron todos los proyectos.
Los proyectos experimentales fueron:
          Convair X-6. Proyecto estadounidense a partir de un bombardero B-36. Llegó a tener un prototipo (el NB-36H) que realizó 47 vuelos de prueba de 1955 a 1957, año en el que se abandonó el proyecto. Se utilizó un reactor de fisión de 3 MW refrigerado con aire que solo entró en funcionamiento para las pruebas de los blindajes, nunca propulsando el avión.
          Tupolev Tu-119. Proyecto soviético a partir de un bombardero Tupolev Tu-95. Tampoco pasó de la etapa de pruebas.
 Propulsión nuclear civil
La energía nuclear se utiliza desde los años 50 como sistema para dar empuje (propulsar) distintos sistemas, desde los submarinos (el primero que utilizó la energía nuclear), hasta naves espaciales en desarrollo en este momento.
10.6. Buques nucleares civiles
 El NS Savannah, el primer buque nuclear de mercancías y pasajeros jamás construido, fue botado en 1962 y desguazado 8 años más tarde por su inviabilidad económica.
Tras el desarrollo de los buques de propulsión nuclear de uso militar se hizo pronto patente que existían ciertas situaciones en las que sus características podían ser trasladadas a la navegación civil.
Se han construido cargueros y rompehielos que usan reactores nucleares como motor.
El primer buque nuclear de carga y pasajeros fue el NS Savannah, botado en 1962. Solo se construyeron otros 3 buques de carga y pasajeros: El Mutsu japonés, el Otto Hahn alemán y el Sevmorput ruso. El Sevmorput (acrónimo de 'Severnii Morskoi Put'), botado en 1988 y dotado con un reactor nuclear tipo KLT-40 de 135 MW, sigue en activo hoy en día transitando la ruta del mar del norte.
Rusia ha construido 9 rompehielos nucleares desde 1959 hasta 2007, realizando recorridos turísticos, viajando hacia el polo norte, desde 1989. El coste de uno de sus viajes es de 25.000 dólares por un viaje de 3 semanas.

10.7. Propulsión aeroespacial
Recreación artística del Proyecto Orión.
Aunque existen varias opciones que pueden utilizar la energía nuclear para propulsar cohetes espaciales, solo algunas han alcanzado niveles de diseño avanzados.
El cohete termonuclear, por ejemplo, utiliza hidrógeno recalentado en un reactor nuclear de alta temperatura, consiguiendo empujes al menos dos veces superiores a los cohetes químicos. Este tipo de cohetes se probaron por primera vez en 1959 (el Kiwi 1), dentro del Proyecto Nerva, cancelado en 1972. En 1990 se relanzó el proyecto bajo las siglas SNTP (Space Nuclear Thermal Propulsión) dentro del proyecto para un viaje tripulado a Marte en 2019. En 2003 comenzó con el nombre de Proyecto Prometeo. Otra de las posibilidades contempladas es el uso de un reactor nuclear que alimente a un propulsor iónico (el Nuclear Electric Xenon Ion System o 'NEXIS').
El Proyecto Orión12 fue un proyecto ideado por Stanisław Ulam en 1947, que comenzó en 1958 en la empresa General Atomics. Su propósito era la realización de viajes interplanetarios de forma barata a una velocidad de un 10% de c. Para ello utilizaba un método denominado propulsión nuclear pulsada (External Pulsed Plasma Propulsión es su denominación oficial en inglés). El proyecto fue abandonado en 1963, pero el mismo diseño se ha utilizado como base en el Proyecto Dédalo13 británico con motor de fusión, el Proyecto Longshot14 americano con motor de fisión acoplado a un motor de fusión inercial o el Proyecto Medusa.
También se ha propuesto el uso de RTG como fuente para un cohete de radioisótopos.

11. Reactor  nuclear
El reactor nuclear es un dispositivo que permite el desarrollo controlado de una reacción nuclear en cadena, por fisión del uranio u otros elementos fisionables, con producción de energía y elevado número de neutrones libres. La energía producida por un reactor nuclear puede utilizarse directamente como calor o ser transformada en energía eléctrica. Los neutrones pueden emplearse para obtener isótopos radioactivos artificiales con fines experimentales (por ejemplo difracción de neutrones por medio de cristales).
En el núcleo del reactor, donde se encuentra el combustible nuclear (Uranio, Thorio o Plutonio) se produce una reacción en cadena autosostenida, es decir, los neutrones, al producirce la fisión, liberan calor y dos o tres neutrones, algunos de los cuales repiten el ciclo.
Las barras de control absorben neutrones y se suben o bajan para controlar las reacciones que ocurren en el núcleo y la cantidad de calor producida.
Los primeros reactores nucleares a gran escala se construyeron en 1944 en Hanford, en el estado de Washington (EEUU), para la producción de material para armas nucleares. El combustible era uranio natural; y como moderador el grafito. Estas plantas producían plutonio mediante la absorción de neutrones por parte del uranio 238; el calor generado no se aprovechaba.



11.1. Reactores de agua ligera y pesada
En todo el mundo se han construido diferentes tipos de reactores (caracterizados por el combustible, moderador y refrigerante empleados) para la producción de energía eléctrica. Por ejemplo, en Estados Unidos, con pocas excepciones, los reactores para la producción de energía emplean como combustible nuclear óxido de uranio isotópicamente enriquecido, con un 3% de uranio 235. Como moderador y refrigerante se emplea agua normal muy purificada. Un reactor de este tipo se denomina reactor de agua ligera (RAL).
En el reactor de agua a presión (RAP), una versión del sistema RAL, el refrigerante es agua a una presión de unas 150 atmósferas. El agua se bombea a través del núcleo del reactor, donde se calienta hasta unos 325 °C. El agua sobrecalentada se bombea a su vez hasta un generador de vapor, donde a través de intercambiadores de calor calienta un circuito secundario de agua, que se convierte en vapor. Este vapor propulsa uno o más generadores de turbinas que producen energía eléctrica, se condensa, y es bombeado de nuevo al generador de vapor. El circuito secundario está aislado del agua del núcleo del reactor, por lo que no es radiactivo. Para condensar el vapor se emplea un tercer circuito de agua, procedente de un lago, un río o una torre de refrigeración. La vasija presurizada de un reactor típico tiene unos 15 m de altura y 5 m de diámetro, con paredes de 25 cm de espesor. El núcleo alberga unas 80 toneladas de óxido de uranio, contenidas en tubos delgados resistentes a la corrosión y agrupados en un haz de combustible.
En el reactor de agua en ebullición (RAE), otro tipo de RAL, el agua de refrigeración se mantiene a una presión algo menor, por lo que hierve dentro del núcleo. El vapor producido en la vasija presurizada del reactor se dirige directamente al generador de turbinas, se condensa y se bombea de vuelta al reactor. Aunque el vapor es radiactivo, no existe un intercambiador de calor entre el reactor y la turbina, con el fin de aumentar la eficiencia. Igual que en el RAP, el agua de refrigeración del condensador procede de una fuente independiente, como un lago o un río.
El nivel de potencia de un reactor en funcionamiento se mide constantemente con una serie de instrumentos térmicos, nucleares y de flujo. La producción de energía se controla insertando o retirando del núcleo un grupo de barras de control que absorben neutrones. La posición de estas barras determina el nivel de potencia en el que la reacción en cadena se limita a automantenerse.
Durante el funcionamiento, e incluso después de su desconexión, un reactor grande de 1.000 Megavatios (MW) contiene una radiactividad de miles de millones de curios. La radiación emitida por el reactor durante su funcionamiento y por los productos de la fisión después de la desconexión se absorbe mediante blindajes de hormigón de gran espesor situados alrededor del reactor y del sistema primario de refrigeración. Otros sistemas de seguridad son los sistemas de emergencia para refrigeración de este último, que impiden el sobrecalentamiento del núcleo en caso de que no funcionen los sistemas de refrigeración principales. En la mayoría de los países también existe un gran edificio de contención de acero y hormigón para impedir la salida al exterior de elementos radiactivos que pudieran escapar en caso de una fuga.
Aunque al principio de la década de 1980 había 100 centrales nucleares en funcionamiento o en construcción en Estados Unidos, tras el accidente de Three Mile Island (ver más adelante) la preocupación por la seguridad y los factores económicos se combinaron para bloquear el crecimiento de la energía nuclear. Desde 1979, no se han encargado nuevas centrales nucleares en Estados Unidos y no se ha permitido el funcionamiento de algunas centrales ya terminadas. En 1990, alrededor del 20% de la energía eléctrica generada en Estados Unidos procedía de centrales nucleares, mientras que este porcentaje es casi del 75% en Francia.
En el periodo inicial del desarrollo de la energía nuclear, en los primeros años de la década de 1950, sólo disponían de uranio enriquecido Estados Unidos y la Unión de Repúblicas Socialistas Soviéticas (URSS). Por ello, los programas de energía nuclear de Canadá, Francia y Gran Bretaña se centraron en reactores de uranio natural, donde no puede emplearse como moderador agua normal porque absorbe demasiados neutrones. Esta limitación llevó a los ingenieros canadienses a desarrollar un reactor enfriado y moderado por óxido de deuterio (D2O), también llamado agua pesada. El sistema de reactores canadienses de deuterio-uranio (CANDU), empleado en 20 reactores, ha funcionado satisfactoriamente, y se han construido centrales similares en la India, Argentina y otros países.
En Gran Bretaña y Francia, los primeros reactores de generación de energía a gran escala utilizaban como combustible barras de metal de uranio natural, moderadas por grafito y refrigeradas por dióxido de carbono (CO2) gaseoso a presión. En Gran Bretaña, este diseño inicial fue sustituido por un sistema que emplea como combustible uranio enriquecido. Más tarde se introdujo un diseño mejorado de reactor, el llamado reactor avanzado refrigerado por gas (RAG). En la actualidad, la energía nuclear representa casi una cuarta parte de la generación de electricidad en el Reino Unido.
En Francia, el tipo inicial de reactor se reemplazó por el RAP de diseño estadounidense cuando las plantas francesas de enriquecimiento isotópico empezaron a proporcionar uranio enriquecido. Rusia y los otros Estados de la antigua URSS tienen un amplio programa nuclear, con sistemas moderados por grafito y RAP. A principios de la década de 1990, estaban en construcción en todo el mundo más de 120 nuevas centrales nucleares.
En España, la tecnología adoptada en los reactores de las centrales nucleares es del tipo de agua ligera; sólo la central de Vandellòs tiene reactor de grafito refrigerado con CO2.
11.2. Reactores de propulsión
Para la propulsión de grandes buques de superficie, como el portaaviones estadounidense Nimitz, se emplean reactores nucleares similares al RAP. La tecnología básica del sistema RAP fue desarrollada por primera vez en el programa estadounidense de reactores navales dirigido por el almirante Hyman George Rickover. Los reactores para propulsión de submarinos suelen ser más pequeños y emplean uranio muy enriquecido para que el núcleo pueda ser más compacto. Estados Unidos, Gran Bretaña, Rusia y Francia disponen de submarinos nucleares equipados con este tipo de reactores.
Estados Unidos, Alemania y Japón utilizaron durante periodos limitados tres cargueros oceánicos experimentales con propulsión nuclear. Aunque tuvieron éxito desde el punto de vista técnico, las condiciones económicas y las estrictas normas portuarias obligaron a suspender dichos proyectos. Los soviéticos construyeron el primer rompehielos nuclear, el Lenin, para emplearlo en la limpieza de los pasos navegables del Ártico.
11.3. Reactores autorregenerativos
Existen yacimientos de uranio, la materia prima en la que se basa la energía nuclear, en diversas regiones del mundo. No se conoce con exactitud sus reservas totales, pero podrían ser limitadas a no ser que se empleen fuentes de muy baja concentración, como granitos y esquistos. Un sistema ordinario de energía nuclear tiene un periodo de vida relativamente breve debido a su muy baja eficiencia en el uso del uranio: sólo aprovecha aproximadamente el 1% del contenido energético del uranio.
La característica fundamental de un “reactor autorregenerativo” es que produce más combustible del que consume. Lo consigue fomentando la absorción de los neutrones sobrantes por un llamado material fértil. Existen varios sistemas de reactor autorregenerativo técnicamente factibles. El que más interés ha suscitado en todo el mundo emplea uranio 238 como material fértil. Cuando el uranio 238 absorbe neutrones en el reactor, se convierte en un nuevo material fisionable, el plutonio, a través de un proceso nuclear conocido como desintegración ð (beta). La secuencia de las reacciones nucleares se indica en la siguiente ecuación:
En la desintegración beta, un neutrón del núcleo se desintegra para dar lugar a un protón y una partícula beta.
Cuando el plutonio 239 absorbe un neutrón, puede producirse su fisión, y se libera un promedio de unos 2,8 neutrones. En un reactor en funcionamiento, uno de esos neutrones se necesita para producir la siguiente fisión y mantener en marcha la reacción en cadena. Una media o promedio de 0,5 neutrones se pierden por absorción en la estructura del reactor o el refrigerante. Los restantes 1,3 neutrones pueden ser absorbidos por el uranio 238 para producir más plutonio a través de las reacciones indicadas en la ecuación anterior.
El sistema autorregenerativo a cuyo desarrollo se ha dedicado más esfuerzo es el llamado reactor autorregenerativo rápido de metal líquido (RARML). Para maximizar la producción de plutonio 239, la velocidad de los neutrones que causan la fisión debe mantenerse alta, con una energía igual o muy poco menor que la que tenían al ser liberados. El reactor no puede contener ningún material moderador, como el agua, que pueda frenar los neutrones. El líquido refrigerante preferido es un metal fundido como el sodio líquido. El sodio tiene muy buenas propiedades de transferencia de calor, funde a unos 100 °C y no hierve hasta unos 900 °C. Sus principales desventajas son su reactividad química con el aire y el agua y el elevado nivel de radiactividad que se induce en el sodio dentro del reactor.
En Estados Unidos, el desarrollo del sistema RARML comenzó antes de 1950, con la construcción del primer reactor autorregenerativo experimental, el llamado EBR-1. Un programa estadounidense más amplio en el río Clinch fue cancelado en 1983, y sólo se ha continuado el trabajo experimental. En Gran Bretaña, Francia, Rusia y otros Estados de la antigua URSS funcionan reactores autorregenerativos, y en Alemania y Japón prosiguen los trabajos experimentales.
En uno de los diseños para una central RARML de gran tamaño, el núcleo del reactor está formado por miles de tubos delgados de acero inoxidable que contienen un combustible compuesto por una mezcla de óxido de plutonio y uranio: un 15 o un 20% de plutonio 239 y el resto uranio. El núcleo está rodeado por una zona llamada capa fértil, que contiene barras similares llenas exclusivamente de óxido de uranio. Todo el conjunto de núcleo y capa fértil mide unos 3 m de alto por unos 5 m de diámetro, y está montado en una gran vasija que contiene sodio líquido que sale del reactor a unos 500 °C. Esta vasija también contiene las bombas y los intercambiadores de calor que ayudan a eliminar calor del núcleo. El vapor se genera en un circuito secundario de sodio, separado del circuito de refrigeración del reactor (radiactivo) por los intercambiadores de calor intermedios de la vasija del reactor. Todo el sistema del reactor nuclear está situado dentro de un gran edificio de contención de acero y hormigón.
La primera central a gran escala de este tipo empleada para la generación de electricidad, la llamada Super-Phénix, comenzó a funcionar en Francia en 1984. En las costas del mar Caspio se ha construido una central de escala media, la BN-600, para producción de energía y desalinización de agua. En Escocia existe un prototipo de gran tamaño con 250 megavatios.
El RARML produce aproximadamente un 20% más de combustible del que consume. En un reactor grande, a lo largo de 20 años se produce suficiente combustible para cargar otro reactor de energía similar. En el sistema RARML se aprovecha aproximadamente el 75% de la energía contenida en el uranio natural, frente al 1% del RAL.

11.4. Reactores de investigación
En muchos países se han construido diversos reactores nucleares de pequeño tamaño para su empleo en formación, investigación o producción de isótopos radiactivos. Estos reactores suelen funcionar con niveles de potencia del orden de 1 MW, y es más fácil conectarlos y desconectarlos que los reactores más grandes utilizados para la producción de energía.
Una variedad muy empleada es el llamado reactor de piscina. En el núcleo del reactor hay por cada centímetro cúbico millones de millones de neutrones, dependiendo la cantidad de la potencia. La mayoría de estos neutrones son utilizados para mantener la reacción en cadena. Los restantes son utilizados para la realización de experimentos.
Los reactores de investigación tienen lo que se llaman facilidades de irradiación donde se colocan las muestras a irradiar. Algunas de estas facilidades son posiciones libres dentro del núcleo donde se puede colocar el experimento. Otras facilidades son conductos, ya sea llenos de aire o algún material específico, que conducen los neutrones hacia el lugar o sala de experimentación.
En la mayoría de los casos las muestras sometidas a irradiación de neutrones deben ser analizadas por distintos métodos. Generalmente los reactores de investigación están construidos junto a laboratorios que permiten estos análisis.
La función principal es proveer neutrones para:
  • Conocer más acerca de la interacción de la radiación con los materiales.
  • Investigar acerca del comportamiento de los neutrones en un reactor nuclear.
  • Analizar materiales por técnicas no destructivas.
  • Producir radioisótopos de uso medicinal e industrial.
  • Investigar fenómenos físicos a nivel del átomo y sus núcleos.
  • Desarrollar criterios de seguridad y radioprotección.
  • Aprender sobre el manejo de reactores.
  • Docencia en el área de la Ingeniería Nuclear y la Física.
  • Conocer mejor el comportamiento de los reactores en general.

12. Ventajas
La energía nuclear genera un tercio de la energía eléctrica que se produce en la Unión Europea, evitando así la emisión de 700 millones de toneladas de dióxido de carbono por año a la atmósfera. [Cita requerida]

Por otra parte, también se evitan otras emisiones de elementos contaminantes que se generan en el uso de combustibles fósiles. Además, se reducen el consumo de las reservas de combustibles fósiles, generando con muy poca cantidad de combustible muchísima mayor energía, evitando así gastos en transportes.

12.1. En la medicina, ha tenido importantes aportaciones: emisiones de radiación (para diagnóstico y terapia), como los rayos X y resonancias magnéticas; radiofármacos, que principalmente consiste en la introducción de sustancias al cuerpo, que pueden ser monitoreadas desde el exterior.

12.2. En la alimentación ha permitido, por medio de las radiaciones ionizantes, la conservación de alimentos. También se ha logrado un aumento en la recolección de alimentos, ya que se ha combatido plagas, que creaban pérdidas en las cosechas.

12.3. En la agricultura, se pueden mencionar las técnicas radioisotópicas y de radiaciones, las cuales son usadas para crear productos con modificación genética, como dar mayor color a alguna fruta o aumentar su tamaño.

13. La energía nuclear y la Industria
La utilización de los radioisótopos y radiaciones en la industria moderna es de gran importancia para el desarrollo y mejoramiento de los procesos, para las mediciones y la automatización y para el Control de Calidad. En la actualidad, casi todas las ramas de la industria utilizan radioisótopos y radiaciones en diversas formas. El empleo de medidores radioisotópicos de espesor es un requisito previo para la completa automatización de las líneas de producción de alta velocidad de hojas de acero o de papel. Los trazadores brindan información exacta sobre las condiciones de equipos industriales costosos y permiten prolongar su vida útil.

14. Inconvenientes
Existe un alto riesgo de contaminación en caso de accidente o sabotaje.
Se producen residuos radiactivos que son difíciles de almacenar y son activos durante mucho tiempo.
Tiene un alto y prolongado coste de las instalaciones y mantenimiento de las centrales nucleares.
Puede usarse con fines no pacíficos



15. Conclusiones

En este siglo el hombre ha descubierto una nueva fuente de energía: la nuclear.
Todos los países se han esforzado en contribuir a su aplicación pacífica y, como consecuencia de este trabajo conjunto, se han desarrollado las centrales nucleares para la producción de energía eléctrica.
Gracias a este esfuerzo de colaboración que se inició en los años cincuenta, la humanidad se ha encontrado con que dispone ahora de una nueva fuente de energía prácticamente ilimitada que le permite hacer frente a los problemas que están planteando los combustibles convencionales, reduciendo su utilización a los fines para los que resultan insustituibles y evitando su consumo en la producción de energía eléctrica.
Durante este tiempo, se ha podido demostrar que las centrales nucleares producen energía eléctrica de una forma fiable, segura y económica.
Las investigaciones para lograr la energía de fusión se vienen realizando en los países más avanzados del mundo, pero aún no se la puede considerar una solución inmediata para el problema energético.
Con lo expuesto anteriormente, podemos decir que la producción de energía atómica ha "madurado" técnica, científicamente y en lo que se refiere a la seguridad para los operarios de estas centrales, para el resto de las personas y para el medio ambiente, lo suficiente como para que sea posible usarla en reemplazo de las energías generadas por la quema de combustibles fósiles. Esto sería una gran ayuda para nuestro planeta.
También creemos que hemos despejado la mayoría de las dudas con respecto a los "temibles" residuos producidos por las centrales nucleares, aunque no dejan de ser un problema hasta que estemos técnicamente avanzados como para poder reaprovecharlos o librarnos definitivamente de ellos.



Bibliografías

-Descubrimiento y desarrollo de la energía nuclear.................. (BW. Paralibros.com/passim/p.20.)
-Fundamentos físicos…………………….. (es.wikipedia.or/wiki/energía%c3%nuclear.)
-Características de la E. N………………... (nucleoticas.la coctelera.net.)
-Riesgos de la energía nuclear…………….. (www.blogenergias.es/energias-nuclear/riesgos.)
 
 

No hay comentarios:

Publicar un comentario en la entrada